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McEwen BS. Physiology and Neurobiology of Stress and Adaptation: Central Role of the Brain. Physiol Rev 87:
873–904, 2007; doi:10.1152/physrev.00041.2006.—The brain is the key organ of the response to stress because it
determines what is threatening and, therefore, potentially stressful, as well as the physiological and behavioral
responses which can be either adaptive or damaging. Stress involves two-way communication between the brain and
the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Beyond the “flight-or-fight”
response to acute stress, there are events in daily life that produce a type of chronic stress and lead over time to wear
and tear on the body (“allostatic load”). Yet, hormones associated with stress protect the body in the short-run and
promote adaptation (“allostasis”). The brain is a target of stress, and the hippocampus was the first brain region,
besides the hypothalamus, to be recognized as a target of glucocorticoids. Stress and stress hormones produce both
adaptive and maladaptive effects on this brain region throughout the life course. Early life events influence life-long
patterns of emotionality and stress responsiveness and alter the rate of brain and body aging. The hippocampus,
amygdala, and prefrontal cortex undergo stress-induced structural remodeling, which alters behavioral and physi-
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ological responses. As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular
physical activity and social support reduce the chronic stress burden and benefit brain and body health and
resilience.

I. INTRODUCTION

Stress is a word used to describe experiences that are
challenging emotionally and physiologically. “Good
stress,” in popular jargon, generally refers to those expe-
riences that are of limited duration and that a person can
master and which leave a sense of exhilaration and ac-
complishment, whereas “bad stress” or “being stressed
out,” in the vernacular, refers to experiences where a
sense of control and mastery is lacking and which are
often prolonged or recurrent, irritating, emotionally drain-
ing, and physically exhausting or dangerous. A hallmark
of the stress response is the activation of the autonomic
nervous system and hypothalamo-pituitary-adrenal (HPA)
axis, and the “fight-or-flight” response is the classical way
of envisioning the behavioral and physiological response
to a threat from a dangerous situation, be it a predator, a
mugger, an accident, or natural disaster. The organism
needs the normal stress hormone response to survive
such situations, and inadequate or excessive adrenocor-
tical and autonomic function is deleterious for health and
survival. Yet, unlike zebras, who don’t get ulcers because
they do not worry, according to Robert Sapolsky’s book
Why Zebras Don’t Get Ulcers (312), human beings are
prone to prolonged periods of elevated activity of the
same systems which help us survive more acute chal-
lenges. This prolonged elevation may be due to anxiety; to
constant exposure to adverse environments involving
such irritants as noise, pollution, and interpersonal con-
flict; and to changes in life-style and health-related behav-
iors that result from being under chronic stress.

The importance of acknowledging the protective, as
well as the potentially damaging effects of the mediators
of stress and adaptation, has led to the introduction of
two terms: “allostasis,” meaning the process of maintain-
ing stability (homeostasis) by active means, namely, by
putting out stress hormones and other mediators; and
“allostatic load or overload,” meaning the wear and tear
on the body and brain caused by use of allostasis, partic-
ularly when the mediators are dysregulated, i.e., not
turned off when stress is over or not turned on adequately
when they are needed.

The brain is the organ of the body that interprets
experiences as threatening or nonthreatening and which
determines the behavioral and physiological responses to
each situation. Besides the hypothalamus and brain stem,
which are essential for autonomic and neuroendocrine
responses to stressors, higher cognitive areas of the brain
play a key role in memory, anxiety, and decision making.
These brain areas are targets of stress and stress hor-

mones, and the acute and chronic effects of stressful
experiences influence how they respond. This is particu-
larly evident over the life course, where early life experi-
ences, combined with genetic factors, exert an important
influence on adult stress responsiveness and the aging
process.

This review summarizes a number of the major
themes that have emerged with particular clarity over the
past two decades since a previous review in this journal
(214). Five themes are described that emphasize both the
short-term and the long-term effects of the physiological
mediators of the stress response and the central role of
the brain as a target of stress and controller of the re-
sponses to stressors. The focus on the brain underlies all
five themes of this review, including the types of behav-
ioral and social interventions, besides pharmaceutical
agents, that can reduce the chronic stress burden. The
intent of this review is not only to summarize salient facts
but also to provide a conceptual framework for future
studies that will introduce more physiology and neuro-
science into developing a better mechanistic understand-
ing of vexing stress-related social and medical problems
and their solution via biological, behavioral, and sociolog-
ical means.

II. PHYSIOLOGICAL AND BEHAVIORAL

FACTORS IN BRAIN AND BODY AGING

ACROSS THE LIFE SPAN

It is not uncommon to hear discussion about how
hardships have “aged” a person, and indeed, the “weath-
ering hypothesis” (117) proposed that stressful life expe-
riences accelerate aging. Some of the ways that this can
happen have become apparent with subsequent research
on animal models (see below), as well as epidemiological
studies in human populations (e.g., Ref. 188). The central
focus of this review is the role of the brain, which is the
key organ of the stress response because it determines
what is threatening and, therefore, stressful and also con-
trols the behavioral and physiological responses to poten-
tially stressful experiences (Fig. 1).

The involvement of my laboratory in this topic began
with our finding in the late 1960s of receptors for adrenal
steroids in the hippocampal formation (116, 217) (Fig. 2),
a brain region that is important for spatial, episodic, and
contextual memory formation (96, 336). This has led to a
wide variety of studies of the functional consequences of
adrenal steroid action over the life span.
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A. Stress, Aging, and the Hippocampus

In neuroscience and neuroendocrinology, the studies of
Landfield (171) and Sapolsky (311) were among the first to
call attention to how aging and adrenal stress hormones
impact the hippocampus. The hippocampus also plays a role
in shutting off the HPA stress response, and damage or
atrophy of the hippocampus impairs the shut off and leads
to a more prolonged HPA response to psychological stres-
sors (134, 141). This led to the “glucocorticoid cascade hy-

pothesis” of stress and aging (311). Longitudinal studies on
aging human subjects support this model. For example, the
work of Lupien et al. (186) revealed that progressive in-
creases in salivary cortisol during a yearly exam over a 5-yr
period predicted reduced hippocampal volume and reduced
performance on hippocampal-dependent memory tasks.

While the initial view of aging in the hippocampus
favored the notion of a loss of neurons, subsequent stud-
ies on animal models of aging have favored a loss of
synaptic connectivity or impairment of synaptic function,

FIG. 1. Central role of the brain in
allostasis and the behavioral and phys-
iological response to stressors. [From
McEwen (211), copyright 1998 Massa-
chusetts Medical Society.]

FIG. 2. Autoradiogram shows uptake and retention of [3H]corticosterone by principal neurons of Ammon’s horn and dentate gyrus of bilaterally
adrenalectomized, adult rats. [Modified from Gerlach and McEwen (116).]
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although with some indication that the aging human hip-
pocampus may lose neurons (115, 287, 289, 377). As dis-
cussed later in this review, besides glucocorticoids, exci-
tatory amino acids in the hippocampus play a prominent
role in the aging process and the damage that can result
from the severe stress of ischemia or seizures (310), as
well as in the reversible stress-induced remodeling of
neurons in the hippocampus. Before discussing these top-
ics in section IV, there are other factors that contribute to
hippocampal function and influence the aging process.

B. Role of 11-Hydroxysteroid Dehydrogenase

Type 1 and Other Regulators of

Glucocorticoid Availability

The glucocorticoid access to the brain and the me-
tabolism of glucocorticoids in brain tissue both play im-
portant roles in determining the magnitude of glucocorti-
coid effects on the hippocampus (Fig. 3). Corticosteroid
binding globulin (CBG) in blood determines the level of
free corticosterone (or cortisol in human) that can gain
access to the brain (325) and the multiple drug resistance
P-glycoprotein (MDRpG) limits the access of synthetic
glucocorticoids such as dexamethasone, as well as corti-
sol (not produced by the rat adrenal) to the rodent brain
(147, 225). As a result of this protective barrier, low doses
of dexamethasone, for example, can produce a hypocor-
ticosteroid state by acting on the pituitary to shut off
corticosterone production (146). Both corticosterone and
11-dehydrocorticosterone (11-DHC, the rat equivalent of
cortisone in corticosterone secreting species) gain ready
access to brain tissue, where 11-DHC (and cortisone in
cortisol secreting species) can be reactivated by the en-
zyme 11-hydroxysteroid dehydrogenase type 1 (11-HSD1),

which reactivates 11-dehydrocorticosterone to corticoste-
rone and cortisone to cortisol. Mice with a genetic dele-
tion of 11-HSD1 show a lesser age-related decline of cog-
nitive function compared with wild-type mice (393). [It is
noteworthy that mice with overexpression of 11-HSD1 in
visceral fat develop visceral obesity and the metabolic
syndrome (203).] The actions of 11-HSD1 in brain may
have relevance for the age-related loss of cognitive func-
tion in humans described above, since even short-term
treatment of people with metabolic syndrome and ele-
vated cortisol levels with an inhibitor of 11-HSD1 has
been reported to have beneficial effects on cognitive func-
tion (306) (Fig. 3).

C. Metabolic Hormones Affect the Hippocampus

Besides glucocorticoids and excitatory amino acids,
a number of protein hormones have been shown to affect
the hippocampus (Fig. 4). The hippocampus has recep-
tors for insulin-like growth factor I (IGF-I) and insulin
(91), and it responds to circulating insulin to translocate
glucose transporters to cell membranes (269). Circulating
IGF-I is a key mediator of the ability of physical activity to
increase neurogenesis in the dentate gyrus of the hip-
pocampal formation (1, 48). IGF-I is taken up into brain
via a transport system different from that which trans-
ports insulin, although there is some overlap (280, 396).
IGF-I is a member of the growth hormone family, and
growth hormone is implicated in cognitive function and
mood regulation (90, 248). Growth hormone is expressed
in the hippocampus where it is upregulated by acute
stress and also, in females, by estradiol (90). Interestingly,
although growth hormone mRNA is expressed in hip-
pocampus (89), growth hormone also enters the brain in

FIG. 3. Access of glucocorticoids to receptors in
hippocampus and other brain regions is regulated by 3
factors: corticosteroid binding globulin (CBG), multiple
drug resistance P-glycoprotein (MDRpG), and metabolism
by 11-hydroxysteroid dehydrogenase type 1 (11 HSD-1).
CBG in the blood binds natural glucocorticoids such as
corticosterone, cortisol, and their 11-dehydro-metabo-
lites, but not the synthetic glucocorticoid dexametha-
sone; only unbound steroid is able to enter the brain.
However, MDRpG at the blood-brain barrier actively
transports synthetic steroids (such as dexamethasone),
and to some extent 17-hydroxylated natural steroids,
such as cortisol, out of the brain so that they do not enter
very readily and only at high doses. Thus MDRpG retards
the entry of cortisol into the brain, especially in the
rodent, but does not affect corticosterone, which enters
readily. In brain tissue, the enzyme 11 HSD-1 converts
11-dehydro-metabolites of corticosterone and cortisol
back to the parent steroid, thus “reactivating” these glu-
cocorticoids. See text for details.

876 BRUCE S. MCEWEN

Physiol Rev • VOL 87 • JULY 2007 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (2600:1700:3FE1:2C20:DDFC:2436:AE70:07C4) on December 27, 2025.



small amounts from the circulation, although not by a
specific transport system (256).

Furthermore, circulating ghrelin, a proappetitive hor-
mone, has been shown to increase synapse formation in
hippocampal pyramidal neurons and to improve hip-
pocampal-dependent memory (86). Ghrelin is transported
into brain via a saturable system (20), and receptors for
ghrelin are expressed in hippocampus, as well as in other
regions of the brain (397).

Another metabolic hormone, leptin, has been found
to exert antidepressant effects when infused directly into
the hippocampus (184). Leptin is transported into the
brain, and both glucose and insulin mediate the ability of
fasting to increase leptin transport into the brain (151).
Leptin receptors are found in hippocampus among other
brain regions, and leptin has actions in hippocampus that
reduce the probability of seizures and enhance aspects of
cognitive function (131) (Fig. 4).

Thus far, there is little information that would indi-
cate the cellular and molecular mechanisms by which
these hormones produce their effects and whether they
interact with some of the other factors that will be dis-
cussed below in connection with mechanisms of struc-
tural plasticity in the hippocampus. Nevertheless, it is
clear that metabolic factors involving glucose regulation
play a role in hippocampal volume change in the human
hippocampus in mild cognitive impairment with aging
(69). In rodents, fatty Zucker rats have poorer hippocam-
pal-dependent memory than lean Zucker rats, as well as
impaired translocation of an insulin-dependent glucose

transporter to hippocampal membranes (381). Moreover,
a diet rich in fat has been shown to impair hippocampal-
dependent memory (380), and a combination of a high-fat
diet and a 3-wk predator exposure causes retraction of
dendrites in the CA3 hippocampus even though neither
treatment alone had this effect (21). The topic of dendritic
retraction and memory impairment by chronic stress will
be revisited below in section IV.

D. Experiential Determinants of Brain

and Body Aging

There are enormous individual differences in the re-
sponse to stress, based on the experience of the individ-
ual early in life and in adult life, and some of the media-
tors described above may be involved. This section sum-
marizes some of these early life experiences and the
animal models that have been used to demonstrate them.

As for the role of experiences, positive or negative
experiences in school, at work, or in romantic and family
interpersonal relationships can bias an individual towards
either a positive or negative response in a new situation.
For example, someone who has been treated badly in a
job by a domineering and abusive supervisor and/or has
been fired will approach a new job situation quite differ-
ently than someone who has had positive experiences in
employment.

Early life experiences perhaps carry an even greater
weight in terms of how an individual reacts to new situ-

FIG. 4. Four peptide/protein hormones, insu-
lin-like growth factor I (IGF-I), insulin, ghrelin,
and leptin, are able to enter the brain and affect
structural remodeling or other functions in the
hippocampus. A transport process is involved,
and specific receptors are expressed in hip-
pocampus as well as in other brain regions. See
text for details. Molecular sizes are indicated for
each hormone along with their molecular size in
kiloDaltons (kDa): ghrelin, 3.5 kDa; leptin, 16
kDa; insulin, 5.8 kDa; IGF-I, 7.6 kDa.
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ations. Early life physical and sexual abuse carry with it a
life-long burden of behavioral and pathophysiological
problems (104, 132). Moreover, cold and uncaring families
produce long-lasting emotional problems in children
(291). Some of these effects are seen on brain structure
and function and in the risk for later depression and
posttraumatic stress disorder (152, 153, 360).

E. Animal Models of Early Life Experience

Animal models have been useful in providing insights
into behavioral and physiological mechanisms (Table 1).
Early life maternal care in rodents is a powerful determi-
nant of life-long emotional reactivity and stress hormone
reactivity, and increases in both are associated with ear-
lier cognitive decline and a shorter life span (51, 107).
Strong maternal behavior, involving licking and grooming
of the offspring, produces a “neophilic” animal that is
more exploratory of novel environments and less emo-
tionally reactive and produces a lower and more con-
tained glucocorticoid stress response in novel situations;
poor maternal care leads to a “neophobic” phenotype
with increased emotional and HPA reactivity and less
exploration of a novel situation (223). Effects of early
maternal care are transmitted across generations by the
subsequent behavior of the female offspring as they be-
come mothers, and methylation of DNA on key genes
appears to play a role in this epigenetic transmission
(107, 371).

The effects of maternal care explain at least part of
the effects of “neonatal handling” that involved the short-
term separation of pups from their mothers (178) (Table
1). The neonatal handling procedure overcomes the del-
eterious effects of prenatal stress to increase emotionality
of offspring (366). Interestingly, more prolonged separa-
tion of pups from mothers increases emotionality and
stress reactivity, in part by decreasing maternal care
when pups are returned to their mothers (271), and an
enriched environment during the peripubertal period
ameliorates these deficits (108) (Table 1).

However, in rodents, abuse of the young, i.e., rough
handling by the mother, is associated with an attachment
to, rather than an avoidance of, the abusive mother, an
effect that increases the chances that the infant can con-
tinue to obtain food and other support until weaning
(346). One way to demonstrate the positive, rather than
avoidance, effects of aversive stimuli in neonates is via
shock-odor conditioning. In this paradigm, neonates be-
come attracted to the odor, at least until they are almost
2 wk of age, when the presence of the mother during
conditioning leads to an attraction to the odor paired with
shock (see Table 1). As for mechanism, the presence of
the mother is able to suppress the pup’s corticosterone
production, which otherwise would increase an aversive
reaction. This has been demonstrated by overriding the
maternal suppression of HPA activity rat pups by implant-
ing corticosterone in the amygdala; this manipulation in-
states fear and fear conditioning and produces an aversive
reaction (237).

Increased emotional reactivity and fear of novelty in
young rats, whatever its cause, has consequences for
longevity and for cognitive function. Male rats were
screened at 43 days old for anxiety and divided into “high”
and “low” anxiety groups and then subjected to 21 days of
daily restraint stress when they were 72 days old; com-
pared with the “low” anxiety” group given chronic stress
and also compared with unstressed controls, the “high”
anxiety rats showed impaired spatial memory in a subse-
quent test using the Y maze (27). In another study, the
profiling of anxiety in even younger rats also has predic-
tive power: male rats that were “neophobic” as pups
continued this pattern into adult life and showed a signif-
icantly shorter life span by �200 days compared with
young rats that were “neophilic,” that is, showed lower
cortisol and emotional reactivity to novelty (51). How-
ever, the cause of death for the neophobic male rats was
unclear. A subsequent study of female rats focused on
tumors as the likely cause of death of neophobic females,
which died 6 mo sooner than neophilic females. In con-
trast to the story for males, neophobic females had lower

TABLE 1. Experiential influences on brain development in rodent models

Nature of Treatment Sensitive Period or Range Effect Later in Life

Prenatal stress (189, 366) Noise, restraint Last week of gestation Neophobia, increased HPA reactivity
Postnatal handling (178) Brief separation from mother Postnatal days 1–14 Neophilia, decreased HPA reactivity
Maternal care (107, 223) Licking and grooming of pups Postnatal days 1–14 Neophilia, decreased HPA reactivity
Maternal separation (271) Prolonged separation from mother Postnatal days 1–14 Neophobia, increased HPA reactivity
Novelty exposure (351) Exposure to novelty Postnatal days 1–21 Enhanced spatial working memory, social

competition, larger HPA response to
unexpected stressor

Aversive conditioning (237, 238) Odor-shock conditioning Postnatal day 8* Odor preference
Postnatal day 12–15† Odor preference
Postnatal day 12–15‡ Odor avoidance
Postnatal day 23* Odor avoidance

* With or without mother present. † With mother present. ‡ Without mother. Please see text for description.
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corticosterone levels than their neophilic counterparts,
and they showed abnormal patterns of prolactin and es-
trogen secretion, pointing away from glucocorticoid dys-
regulation as the sole cause of pathophysiology (52). Yet,
not all consequences of the neophilic state are necessarily
beneficial. For example, in mice, neonatal handling, the
procedure that induces the neophilic state, increases the
damage associated with elevated corticosterone during
ischemia, at least in part by increasing poststroke proin-
flammatory cytokine expression (74). The underlying
mechanisms are as yet unexplored.

It is important to note that other conditions that
affect the rearing process can also affect emotionality in
offspring. For example, uncertainty in the food supply for
rhesus monkey mothers leads to increased emotionality
in offspring and possibly an earlier onset of obesity and
diabetes (71). On a more positive side, the experience of
novelty has beneficial effects for cognitive function and
social interactions that go beyond the maternal influence
(351) (Table 1). Exposure of pups to novelty away from
the home environment in a carefully controlled paradigm
that dissociates maternal individual differences from a
direct stimulation effect on the offspring resulted in en-
hancement of spatial working memory, social competi-
tion, and corticosterone response to an unexpected
stressor during adulthood compared with their home-
staying siblings. These functional enhancements in nov-
elty-exposed rats occurred despite evidence that mater-
nal care was preferentially directed toward home-staying
instead of novelty-exposed pups, indicating that a greater
maternal care is neither necessary nor sufficient for these
early stimulation-induced functional enhancements (351).

Early life experiences have effects on human physi-
ology and behavior. Prenatal stress is believed to be a
factor in causing preterm birth, as well as full-term birth
with low birth weight (25, 364). Low birth weight is a risk
factor for cardiovascular disease and high body mass (25,
274). Childhood experiences in emotionally cold families
increase the likelihood of poor mental and physical health
later in life (291), and abuse in childhood is a well-known
risk factor for depression, posttraumatic stress disorder,
idiopathic chronic pain disorders, substance abuse, anti-
social behavior, as well as obesity, diabetes, and cardio-
vascular disease (14, 104, 132). Chaos in the home envi-
ronment is a key determinant of poor self-regulatory be-
haviors, a sense of helplessness and psychological
distress (102), as well as increased body mass and ele-
vated blood pressure (101).

F. Genetic Factors

So far, this review has emphasized the important role
of the environment and experiences of individuals in
health outcomes, but clearly genetic differences also play

an important role. This review will not attempt to sum-
marize this growing area of investigation, but rather note
some of the most prominent recent evidence showing that
different alleles of commonly occurring genes determine
how individuals will respond to stressful life experiences.
For example, the short form of the serotonin transporter
is associated with a number of conditions such as alco-
holism (26, 133), and individuals who have this allele are
more vulnerable to respond to stressful experiences by
developing depressive illness (50). In childhood, individ-
uals with an allele of the monoamine oxidase A gene are
more vulnerable to abuse in childhood and more likely to
themselves become abusers and to show antisocial be-
haviors compared with individuals with another com-
monly occurring allele (49). Yet another example is the
consequence of having the Val66Met allele of the brain-
derived neurotrophic factor (BDNF) gene on hippocam-
pal volume, memory, and mood disorders (57, 130, 142,
265, 349). A mouse model of this genotype has revealed
reduced dendritic branching in hippocampus, impaired
contextual fear conditioning, and increased anxiety that is
less sensitive to antidepressant treatment (56). Finally,
alleles of the glucocorticoid receptor gene found in the
normal population confers a higher sensitivity to glu-
cocorticoids for both negative feedback and insulin re-
ponsiveness (138) or glucocorticoid resistance (358), and
there is evidence of increased likelihood of depression in
several alleles and increased response to antidepressants
in one of them. Therefore, the importance of continuing to
identify candidate genes, as well as the subtlety of gene-
environment interactions, should be clear from this brief
overview.

III. PROTECTIVE AND DAMAGING EFFECTS

OF STRESS MEDIATORS

A. Stress, Allostasis, and Allostatic Load

There are two key aspects of the stress response
(211). On the one hand, the body responds to many ex-
periences by releasing chemical mediators, for example,
catecholamines that increase heart rate and blood pres-
sure. These mediators promote adaptation to an acute
stressor, as well as to simple acts like getting out of bed
in the morning or climbing a flight of stairs. On the other
hand, chronic elevation of these same mediators, e.g.,
chronically increased heart rate and blood pressure, can
cause pathophysiological changes, for example, in the
cardiovascular system that result, over time, in patho-
physiological conditions like atherosclerosis, which can
result in strokes and myocardial infarctions.

Because of the paradoxical actions of these media-
tors in both protection and damage, and also because the
word stress has ambiguities and connotations that inter-
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fere with its precise use, the term allostasis was intro-
duced by Sterling and Eyer (342) to refer to the active
process by which the body responds to daily events and
maintains homeostasis (allostasis literally means “achiev-
ing stability through change”). Because chronically in-
creased allostasis can lead to pathophysiology, we intro-
duced the term allostatic load or overload (see distinction
below) to refer to the wear and tear that results from
either too much stress or from inefficient management of
allostasis, such as not turning off the response when it is
no longer needed (211, 216, 218). Other forms of allostatic
load/overload are summarized in Figure 5 and involve not
shutting off the response efficiently, not turning on an
adequate response in the first place, or not habituating to

the recurrence of the same stressor and thus dampening
the allostatic response.

B. Protection and Damage: The Two Sides of the

Response to Stressors

Thus protection and damage are the two contrasting
sides of the physiology involved in defending the body
against the challenges of daily life, whether or not we call
them “stressors.” Besides epinephrine and norepineph-
rine, there are many mediators that participate in allosta-
sis, and they are linked together in a network of regula-
tion that is nonlinear, meaning that each mediator has the
ability to regulate the activity of the other mediators,

FIG. 5. Four types of allostatic load.
Top panel: illustrates the normal allostatic
response, in which a response is initiated
by a stressor, sustained for an appropriate
interval, and then turned off. The remain-
ing panels illustrate four conditions that
lead to allostatic load: top left, repeated
“hits” from multiple stressors; top right,
lack of adaptation; bottom left, prolonged
response due to delayed shut down;
bottom right, inadequate response that
leads to compensatory hyperactivity of
other mediators (e.g., inadequate secre-
tion of glucocorticoid, resulting in in-
creased levels of cytokines that are nor-
mally counterregulated by glucocorti-
coids). [From McEwen (211), copyright
1998 Massachusetts Medical Society.]
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sometimes in a biphasic manner. For example, glucocor-
ticoids produced by the adrenal cortex in response to
ACTH from the pituitary gland is the other major “stress
hormone.” Yet, pro- and anti-inflammatory cytokines are
produced by many cells in the body, and they regulate
each other and are, in turn, regulated by glucocorticoids
and catecholamines; that is, whereas catecholamines can
increase proinflammatory cytokine production (32), glu-
cocorticoids are known to inhibit this production (313).
And yet, there are exceptions, e.g., proinflammatory ef-
fects of glucocorticoids that depend on dose and cell or
tissue type (88, 190). The parasympathetic nervous sys-
tem also plays an important regulatory role in this non-
linear network of allostasis, since it generally opposes the
sympathetic nervous system and, for example, slows the
heart, and it also has anti-inflammatory effects (35, 355).

What this nonlinearity means is that when any one
mediator is increased or decreased, there are compensa-
tory changes in the other mediators that depend on time
course and level of change of each of the mediators.
Unfortunately, biomedical technology cannot yet measure
all components of this system simultaneously and must
rely on measurements of only a few of them in any one
study. Yet the nonlinearity must be kept in mind in inter-
preting the results.

C. Stress in the Natural World

The operation of allostasis in the natural world pro-
vides some insight into how animals use this response to
their own benefit or for the benefit of the species. As an
example of allostasis, in springtime, a sudden snowstorm
causes stress to birds and disrupts mating, and stress
hormones are pivotal in directing the birds to suspend
reproduction, to find a source of food, and to relocate to
a better mating site or at least to delay reproduction until
the weather improves (379). As an example of allostatic
load, bears preparing to hibernate for the winter eat large
quantities of food and put on body fat to act as an energy
source during the winter (244). This accumulation of fat is
used, then, to survive the winter and provide food for
gestation of young; in contrast, the fat accumulation oc-
curs in bears that are captive in zoos and eating too much,
partially out of boredom, while not exercising (218). The
accumulation of fat under these latter conditions can be
called “allostatic overload” referring to a more extreme
condition that is associated with pathophysiology. Yet,
allostatic overload can also have a useful purpose for the
preservation of the species, such as in migrating salmon
or the marsupial mouse, that die of excessive stress after
mating. The stress and allostatic load are caused for
salmon, in part, by the migration up the rapidly flowing
rivers but also because of physiological changes that rep-
resent accelerated aging and include suppression of the

immune system (103, 120, 205). One beneficial result of
eliminating the adult salmon is freeing up food and other
resources for the next generation. In the case of the
marsupial mouse, it is only the males that die after mating,
and the hypothesized mechanism is a response to mating
that reduces the binding protein CBG for glucocorticoids
and renders them much more active throughout the body,
including likely suppressive actions on the immune de-
fense system (62).

D. Being “Stressed Out”: Example of Sleep

Deprivation and Its Consequences

The common experience of being “stressed out” has
as its core the elevation of some of the key systems that
lead to allostatic overload: cortisol, sympathetic activity,
and proinflammatory cytokines, with a decline in para-
sympathetic activity. Nowhere is this better illustrated
than for poor or inadequate sleep, which is a frequent
result of being “stressed out.” Sleep deprivation produces
an allostatic overload that can have deleterious conse-
quences.

Because the brain is the master regulator of the
neuroendocrine, autonomic, and immune systems, as well
as behavior (211) (Fig. 1), alterations in brain function by
chronic stress can, therefore, have direct and indirect
effects on the cumulative allostatic overload. Reduced
sleep duration has been reported to be associated with
increased body mass and obesity in the NHANES study
(113). Sleep restriction to 4 h of sleep per night increases
blood pressure, decreases parasympathetic tone, in-
creases evening cortisol and insulin levels, and promotes
increased appetite, possibly through the elevation of
ghrelin, a proappetitive hormone, along with decreased
levels of leptin (174, 334, 335). Moreover, proinflamma-
tory cytokine levels are increased with sleep deprivation,
along with decreased performance in tests of psychomo-
tor vigilance, and this has been reported to result from a
modest sleep restriction to 6 h/night (361).

Allostatic overload resulting from chronic stress in
animal models causes atrophy of neurons in the hip-
pocampus and prefrontal cortex, brain regions involved in
memory, selective attention, and executive function, and
causes hypertrophy of neurons in the amygdala, a brain
region involved in fear and anxiety as well as aggression
(213) (see sect. IV). Thus the ability to learn and remember
and make decisions may be compromised by chronic
stress and may be accompanied by increased levels of
anxiety and aggression.

Sleep deprivation causes cognitive impairment. Sleep
deprivation in rats using a treadmill for 96 h has been
reported to decrease proliferation of cells in the dentate
gyrus of the hippocampal formation by as much as 50%
(126). A similar effect has also been reported by keeping
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rats in a slowly rotating drum, but here again, there is a
question of how much physical activity and physical
stress may have contributed to the suppression of cell
proliferation (296). Nevertheless, sleep restriction by nov-
elty exposure, a more subtle method, prevented the in-
creased survival of new dentate gyrus neurons promoted
by spatial training in a Morris water maze (128).

Indeed, with respect to memory and cognitive per-
formance, there are numerous reports of impairments
following sleep deprivation in animal models. For exam-
ple, sleep deprivation by the platform (or flower pot)
method resulted in impaired retention of passive avoid-
ance memory, a context-dependent fear memory task
(326), as well as impaired performance of spatial memory in
the Morris water maze (395) and a reduction in long-term
potentiation in the CA1 region of the hippocampus (159).

Sleep deprivation by gentle stimulation or novelty in
the aftermath of contextual fear conditioning has been
reported to impair memory consolidation (123). More-
over, a 6-h period of total sleep deprivation by novelty
exposure impaired acquisition of a spatial task in the
Morris water maze (125). Furthermore, a 4-h period of
sleep deprivation by gentle stimulation impaired the late-
phase long-term potentiation (LTP) in the dentate gyrus
48 h later but had the opposite effect to enhance late-
phase LTP in the prefrontal cortex (297). Sleep fragmen-
tation, produced by movement on a treadmill every 2 min,
resulted in a complete suppression of LTP in the CA1
region of the hippocampus as well as impairing the acqui-
sition of spatial learning, although long-term depression
(LTD) and paired pulse facilitation were unaffected (353).

There is evidence not only for cognitive impairment
resulting from sleep restriction, but also for altered neural
levels of cytokines, oxidative stress markers, and brain
glycogen levels, that may contribute to the impairment of
function. With respect to proinflammatory cytokines,
IL-1� mRNA levels in brain are reported to increase fol-
lowing sleep deprivation by gentle handling and to be
higher in daytime (during the normal sleep period in
rodents) than in darkness (during the normal activity time
for rodents) (350). Closely related to inflammatory pro-
cesses through the actions of NADPH oxidase (58, 352) is
oxidative stress involving the generation of free radicals.
Sleep deprivation in mice for 72 h by the “flower pot” or
platform method has been reported to increase oxidative
stress in hippocampus as measured by increased lipid
peroxidation and increased ratios of oxidized to reduced
glutathione (326).

Another noteworthy effect of sleep deprivation is to
regulate the level of glycogen, found predominantly in
white matter, that is reported to decrease by as much as
40% in rats deprived of sleep for 24 h by novelty and gentle
handling and reversed by recovery sleep (40, 164). It is
noteworthy that glycogen in astrocytes is able to sustain

axon function during glucose deprivation in CNS white
matter (374).

Sleep deprivation has also been associated with in-
creases in fighting behavior after deprivation of rapid-eye-
movement (REM) sleep (81); there is also a report of
increased aggression in the form of muricide, i.e., killing
by rats of mice, after phencyclidine administration follow-
ing sleep deprivation (241). These findings may be related
to the finding of increased aggression among cage mates
in rats subjected to 21 days of 6 h/day of chronic restraint
stress during the resting period when some sleep depri-
vation may occur (385). Interestingly, however, there are
also anxiety-reducing effects of certain types of sleep
deprivation. For example, a 12-h sleep deprivation that is
applied by using a slowly rotating drum that minimizes
physical stress, but does produce locomotor activity, re-
versed the decreased open field behavior induced by a
single social defeat (224), and another study has shown
that total sleep deprivation reduces immobility in a Por-
solt swim test, which is regarded as a sign of behavioral
depression (182). These interesting findings are perhaps
related to the reported acute antidepressant effects of
sleep deprivation in humans (261).

IV. THE BRAIN AS A TARGET OF STRESS

AND ALLOSTATIC LOAD

The brain is a target of stress and stress hormones,
and the processes of allostasis and allostatic load are
exemplified by how different brain regions respond to
acute and chronic stressors. Because the hippocampus
was the first higher brain center that was recognized as a
target of stress hormones, it has figured prominently in
our understanding of how stress impacts brain structure
and behavior. The following discussion builds on the
earlier discussion of the role of the hippocampus in HPA
regulation and the aging process, and it considers both
the positive and negative effects of stress on memory, as
well as the gradual changes in hippocampal structure and
function associated with prolonged or repeated stress.
Effects of stress on the amygdala and prefrontal cortex
will then be summarized.

A. The Hippocampus: Stress-Induced Excitability

Enhancement Versus Suppression

The hippocampus expresses both type I (mineralo-
corticoid, MR) and type II (glucocorticoid, GR) recep-
tors, and these receptors mediate a biphasic response
to adrenal steroids in the CA1 region, although not in
the dentate gyrus (143), which, nevertheless, shows a
diminished excitability in the absence of adrenal ste-
roids (200). Other brain regions, such as the paraven-
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tricular nucleus, lacking in MR but having GR, show a
monophasic response (143) (Fig. 6). Adrenal steroids
exert biphasic effects on excitability of hippocampal
neurons in terms of long-term potentiation and primed
burst potentiation (85, 257, 259) and show parallel bi-
phasic effects upon memory (279).

1. Role of genomic and nongenomic mechanisms

In considering possible mechanisms for the bipha-
sic responses, the coexpression of MR and GR in the
same neurons could give rise to heterodimer formation
and a different genomic activation from that produced
by either MR or GR homodimers (143). In addition,
deletion of the type I (MR) receptor by genetic means
has revealed that MR are required for nongenomic reg-

ulation of glutamatergic transmission by glucocorti-
coids (148), a phenomenon that involved glucocorticoid
enhancement of extracellular levels of glutamate (359)
that plays an important role in both modulatory and
excitotoxic effects of glucocorticoids (see sect. IVB4).
Although beyond the scope of this review, the subject
of nongenomic actions of adrenal steroids has taken on
increasing importance in view of the discovery of ad-
renal steroid receptors that are G protein coupled in the
amphibian brain (252), as well as glucocorticoid recep-
tor immunoreactivity in postsynaptic and other non-
nuclear regions of neurons in the rodent brain (145,
179) and a large number of reported rapid, nongenomic
actions of adrenal steroids (36, 197). Hence, it is per-
haps not surprising that there are conditions involving
neural transmission that favor either rapid positive or

FIG. 6. Dose-response relationships of the cellular effects of corticosterone in the brain. Dose-response relationships are shown for the CA1
hippocampal area (A), the dentate gyrus (B), the PVN of the hypothalamus (C), and the dorsal raphe nucleus (D). Graphs show hormone responses
expressed as a percentage of the maximal response in these brain regions. The concentration of corticosterone is an approximate estimate of the
local concentration based on the solutions perfused on in vitro preparations or derived from the plasma concentration when fluctuations in hormone
levels were accomplished in vivo. A: in the CA1 area, both the amplitude of depolarization-induced calcium currents (white squares) and the
hyperpolarization caused by serotonin 1A receptor activation (black circles) display a U-shaped dose dependency. The descending limb is linked
to the activation of mineralocorticoid receptors (MRs), whereas the ascending limb is associated with gradual glucocorticoid receptor (GR)
activation in addition to already activated MRs, as occurs after stress. B: dentate gyrus granule neurons show a clear MR-dependent effect on the
field potential (black squares) and the single-cell response (black triangles) caused by activation of glutamate AMPA receptors. Although these cells
also abundantly express GRs, high doses of corticosterone do not cause additional changes in the signal, except when tested in chronically stressed
rats (white triangles). C: neurons in the PVN (C) and the raphe nucleus (D) express GRs primarily. In these cells, a linear dose dependency is seen
for the frequency of spontaneous �-aminobutyric acid (GABA)A-receptor-mediated synaptic events (gray squares) and the inhibition caused by
serotonin 1A receptor activation (gray circles). [From Joels (143), with permission from Elsevier.]
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negative actions of adrenal steroids on processes such
as learning and memory.

Although much of the work on MR and GR has been
done on rat and mouse brains, it is important to note that
the rhesus monkey hippocampus has a predominance of
MR and relatively less GR compared with rodent species
(305). This finding may have important implications for
the effects of adrenal steroids on learning and vulnerabil-
ity to stress and excitotoxicity, as well as age-related
changes discussed earlier.

2. The conditional nature of adrenal steroid actions

on memory

Emotional arousal for a rodent by being placed in a
novel environment is required for adrenal steroids to
enhance object recognition memory, that involves the
hippocampus; the effects of adrenal steroids on this mem-
ory show an inverted U-shaped dose response (250).
Moreover, spatial memory in a Morris water maze, a
stressful behavioral task, is facilitated by adrenal steroids
in wild-type mice, but this facilitation is lacking in mice
with a dimerization-deficient GR (249). In the study in-
volving novelty-induced emotional arousal, the dose
range of corticosterone is such that both GR and MR
occupancy are involved (250). Yet, prior habituation to
the novel environment, thus removing the emotional
arouse of novelty, abolishes the facilitation (250). More-
over, corticosterone doses that facilitate memory at 24 h
posttraining inhibit memory retention at 1 h posttraining
(250). The inhibition of memory retrieval by acute corti-
costeroid administration is a phenomenon that has also

been reported (82, 246, 247, 301), and biphasic effects
of corticosteroids on working memory have been de-
scribed (187).

In providing a framework for understanding these
phenomena, Joels et al. (144) propose a very plausible
unifying theory, which states that “. . . stress will only
facilitate learning and memory processes: 1) when stress
is experienced in the context and around the time of the
event that needs to be remembered, and 2) when the
hormones and transmitters released in response to stress
exert their actions on the same circuits as those activated
by the situation, that is, when convergence in time and
space takes place” (see Fig. 7). According to their view,
“the mechanism of action of stress hormones, particularly
corticosteroids, can explain how stress within the context
of a learning experience induces focused attention and
improves memory of relevant information.”

B. The Hippocampus: Structural Remodeling

Another way that stress hormones modulate function
within the brain is by changing the structure of neurons.
As already noted, the hippocampus is one of the most
sensitive and malleable regions of the brain. Within the
hippocampus, the input from the entorhinal cortex to the
dentate gyrus is ramified by the connections between
the dentate gyrus and the CA3 pyramidal neurons. One
granule neuron innervates, on the average, 12 CA3 neu-
rons, and each CA3 neuron innervates, on the average, 50
other CA3 neurons via axon collaterals, as well as 25
inhibitory cells via other axon collaterals. The net result is

FIG. 7. Opposing effects of stress on learning
depend on the timing of the events. A: stress within
the context of a learning situation leads to the
release of norepinephrine (NA), corticotropin re-
leasing hormone (CRH), and cortisol (CORT), all of
which are active in the brain at the time that the
initial phases of learning take place. At this stage,
the neurotransmitters and hormones facilitate the
ongoing process. Corticosterone, however, also ini-
tiates a gene-mediated pathway, which will elevate
the threshold for input unrelated to the initial event
and restore neuronal activity (normalization), with
a delay of more than an hour. B: if an organism has
been exposed to a stressor some time before the
learning process takes place, the gene-mediated
suppression of activity will have developed by the
time that acquisition occurs. Under these condi-
tions corticosterone will impair learning processes.
[From Joels et al. (144), with permission from
Elsevier.]
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a 600-fold amplification of excitation, as well as a 300-fold
amplification of inhibition, that provides some degree of
control of the system (212).

As to why this type of circuitry exists, the dentate
gyrus-CA3 system is believed to play a role in the memory
of sequences of events, although long-term storage of
memory occurs in other brain regions (180). But, because
the dentate gyrus (DG)-CA3 system is so delicately bal-
anced in its function and vulnerability to damage, there is
also adaptive structural plasticity, in that new neurons
continue to be produced in the dentate gyrus throughout
adult life, and CA3 pyramidal cells undergo a reversible
remodeling of their dendrites in conditions such as hiber-
nation and chronic stress, including a combination of
food restriction and increased physical activity (170, 194,
212, 272, 273). The role of this plasticity may be to protect
against permanent damage, or it may enhance vulnerabil-
ity to damage, a topic that is discussed below. Whatever
the physiological significance of these changes, the hip-
pocampus undergoes a number of adaptive changes in
response to acute and chronic stress.

1. Replacement of neurons in dentate gyrus

One type of change involves replacement of neurons.
The subgranular layer of the dentate gyrus contains cells
that have some properties of astrocytes (e.g., expression
of glial fibrillary acidic protein) and that give rise to
granule neurons (155, 320). After bromodeoxyuridine
(BrdU) administration to label DNA of dividing cells,

these newly born cells appear as clusters in the inner part
of the granule cell layer, where a substantial number of
them will go on to differentiate into granule neurons
within as little as 7 days. In the adult rat, 9,000 new
neurons are born per day and survive with a half-life of 28
days (46). There are many hormonal, neurochemical, and
behavioral modulators of neurogenesis and cell survival
in the dentate gyrus, including estradiol, IGF-I, antide-
pressants, voluntary exercise, and hippocampal-depen-
dent learning (1, 76, 356). Neurochemical systems that
regulate neurogenesis are summarized in Figure 8 and
Table 2 and include excitatory amino acids, serotonin,
norepinephrine, benzodiazepines, endogenous opioids,
BDNF, and IGF-I, as well as glucocorticoids. With respect
to stress, certain types of acute stress and many chronic
stressors suppress neurogenesis or cell survival in the den-
tate gyrus, and the mediators of these inhibitory effects
include excitatory amino acids acting via NMDA receptors
and endogenous opioids (121). The topic of the regulation of
neurogenesis is revisited in section VI.

2. Remodeling of dendrites and synapses

Another form of structural plasticity is the remodel-
ing of dendrites in the hippocampus, amydala, and pre-
frontal cortex. In hippocampus, chronic restraint stress
(CRS; daily for 21 days) causes retraction and simplifica-
tion of dendrites in the CA3 region of the hippocampus
(212, 332). Such dendritic reorganization is found in both
dominant and subordinate rats undergoing adaptation to

FIG. 8. Structural plasticity in hippocampus involving synaptogenesis (S), neurogenesis (N), and dendritic remodeling (D) involves multiple
neurochemical systems, evidence for which is summarized below and in the text. Table 2 summarizes interactions of adrenal steroids with key
neurochemical systems involved in structural remodeling. 1) Glutamate release and reuptake: S, N, D, see text; 2) NMDA receptor activation,
blockade: S, N, D, see text; 3) circulating glucocorticoids involving both mineralocorticoid (MR) and glucocorticoid (GR) receptors: S, N, D, see text;
4) serotonin: N (136); 5) norepinephrine: N (294); 6) endogenous opioids: N (97); 7) benzodiazepines: N, D (163, 192); 8) brain-derived neurotrophic
factor (BDNF): N, D, see text; 9) IGF-I, insulin, ghrelin, and leptin: S, N, see text.
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psychosocial stress in the visible burrow system, and it is
independent of adrenal size (219). It also occurs in psy-
chosocial stress in intruder tree shrews in a resident-
intruder paradigm, with a time course of 28 days (193), a
procedure that, it should be noted, does not cause a loss
of pyramidal neurons in the hippocampus (362). The
mossy fiber input to the CA3 region at the stratum
lucidum appears to drive the dendritic remodeling,
since it is the apical dendrites above this input that
retract (212).

Moreover, the thorny excrescences (giant spines)
upon which the mossy fiber terminals form their synapses
show stress-induced modifications (343). CRS caused re-
traction of thorny excrescence that was reversed after
water maze training. In restrained rats that were water
maze trained, postsynaptic density (PSD) volume and
surface area increased significantly, and the proportion of
perforated PSDs almost doubled after water maze training
and restraint stress. Moreover, the numbers of endosome-
like structures in thorny excrescences decreased after
restraint stress and increased after water maze training
(343). The number of active synaptic zones between
thorny excrescences and mossy fiber terminals is rapidly
modulated during hibernation and recovery from the hi-
bernating state (194). The thorny excrescences are not
the only spines affected by CRS. Dendritic spines also
show remodeling, with increased spine density reported
after chronic restraint stress on apical dendrites of CA3
neurons (347) (Fig. 8).

3. Puberty as a key stage of brain maturation

and stress sensitivity

Puberty is a developmental period of great change in
brain and body, and peripubertal male and female rats
show a prolonged HPA response to acute stressors com-
pared with adults (299, 300). While this prolonged re-
sponse is not altered by the presence or absence of go-
nadal hormones (299, 300), 7 days of repeated restraint
stress in male rats causes the HPA response to shut off
more efficiently in the peripubertal rats and more slowly
in the adult rats (298). Moreover, as noted earlier in this
review, prepubertal rats that show higher anxiety respond
to repeated stress as adults with a greater impairment of
spatial memory in a Y maze and also show higher basal
levels of corticosterone 1 mo after the end of chronic
stress (27).

Although 3–4 wk of chronic stress in adult rats
causes a reversible reduction in remodeling of dendrites
and suppression of neurogenesis, prepubertal rats do
show a delayed and prolonged effect of chronic stress on
hippocampal development. A chronic variable stress reg-
imen for 4 wk starting at postnatal day 28, prior to the
onset of puberty, resulted in a stunting of growth of the
CA1 pyramidal cell layer and in the dentate gyrus-granular
cell layer, as well as the CA3 pyramidal cells, and yet there
was no reduction of neuron number (140). The reduced
volume was evident at 3 wk but not at 24 h after chronic
stress and was accompanied by impairments in Morris
water-maze performance and sustained downregulation
in the basal hippocampal GR gene expression, and deficits
in the shut-off of acute stress-induced corticosterone se-
cretion (140).

Although the mechanism for the developmental ef-
fects of repeated stress are not known, data summarized
at the beginning of this section suggest that the HPA axis
is likely to play some role, as it does in stress effects on
the adult hippocampus (see sect. V). Indeed, daily corti-
costerone treatment from 0–30 days resulted in a reduc-
tion of both volume and neuron number in both CA3 and
dentate gyrus, whereas treatment of rats with daily corti-
costerone injections for 30–90 days starting in adult life
produced no reductions of neuron number but did reduce
volume of CA3 and dentate gyrus (333). Other differences
between the effects of chronic corticosterone treatment
and chronic stress will be discussed again below.

4. Mechanisms of structural remodeling

Exploration of the underlying mechanism for this
remodeling of dendrites and synapses reveals that it is not
adrenal size or presumed amount of physiological stress
per se that determines dendritic remodeling, but a com-
plex set of other factors that modulate neuronal structure
(212) (Fig. 8 and Table 2). Indeed, in species of mammals
that hibernate, dendritic remodeling is a reversible pro-

TABLE 2. Adrenal steroid actions on neurochemical

systems in hippocampus

Extracellular glutamate
Adrenalectomy prevents stress-induced rise of extracellular

glutamate (183)
Glucortcoids increase extracellular glutamate (232, 339)
Stress induces Glt-1, glutamate transporter (290)

NMDA receptors
Glucocorticoids upregulate NR2A&B (NMDA) receptor subunit

mRNA (372)
Calcium currents

Glucocorticoids increase calcium conductances (157)
Glucocorticoids downregulate calcium extrusion pump (30)
Adrenal steroids biphasically regulate voltage-induced calcium

currents (149)
5-HT system

Adrenal steroids are required for stress-induced serotonin turnover
(18, 166, 328, 348)

Adrenal steroids biphasically regulate 5-HT1A receptors
(54, 143, 228)

GABA benzodiazepine receptors
Differential regulation of GABAA receptor subunit mRNA levels by

ADX and corticosterone (253, 254)
Opioids

Glucocorticoids reverse ADX decrease in dynorphin in dentate
gyrus (354)

Glucocorticoids upregulate preproenkephalin mRNA in
hippocampus (7)
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cess and occurs within hours of the onset of hibernation
in European hamsters and ground squirrels, and it is also
reversible within hours of wakening of the animals from
torpor (17, 194, 272, 273). This implies that reorganization
of the cytoskeleton is taking place rapidly and reversibly
and that changes in dendrite length and branching are not
“damage” but a form of structural plasticity.

Regarding the cellular and molecular mechanisms
underlying structural remodeling, adrenal steroids are im-
portant mediators of remodeling of hippocampal neurons
during repeated stress, and exogenous adrenal steroids
can also cause remodeling in the absence of an external
stressor (192, 332). The role of adrenal steroids involves
many interactions with neurochemical systems in the hip-
pocampus, including serotonin, endogenous opioids, cal-
cium currents, GABA-benzodiazepine receptors, and ex-
citatory amino acids (212), as summarized in Figure 8 and
Table 2 (213). Central to all of these interactions is the
role of excitatory amino acids, such as glutamate. Exci-
tatory amino acids released by the mossy fiber pathway
play a key role in the remodeling of the CA3 region of the
hippocampus, and regulation of glutamate release by ad-
renal steroids may play an important role (212). The role
of factors in regulating dendritic remodeling and synap-
togenesis is summarized in Figure 8 and Table 2.

Among the consequences of restraint stress is the
elevation of extracellular glutamate levels, leading to in-
duction of glial glutamate transporters, as well as in-
creased activation of the nuclear transcription factor
phosphoCREB (384). Moreover, 21 days of CRS leads to
depletion of clear vesicles from mossy fiber terminals and
increased expression of presynaptic proteins involved in
vesicle release (124, 196). Taken together with the fact
that vesicles which remain in the mossy fiber terminal are
near active synaptic zones and that there are more mito-
chondria in the terminals of stressed rats, this suggests
that CRS increases the release of glutamate (196).

Extracellular molecules play a role in remodeling.
Neural cell adhesion molecule (NCAM) and its polysi-
alated-NCAM (PSA-NCAM), as well as L1 are expressed in
the dentate gyrus and CA3 region and the expression of
both NCAM, L1, and PSA-NCAM are regulated by 21 days
of CRS (307). Tissue plasminogen activator (tPA) is an
extracellular protease and signaling molecule that is re-
leased with neural activity and is required for chronic
stress-induced loss of spines and NMDA receptor sub-
units on CA1 neurons (260).

Within the neuronal cytoskeleton, the remodeling of
hippocampal neurons by CRS and hibernation alters the
acetylation of microtubule subunits that is consistent with
a more stable cytoskeleton (31) and alters microtubule-
associated proteins, including the phosphorylation of a
soluble form of tau, that is increased in hibernation and
reversed when hibernation is terminated (17). Another
cytoskeletal molecule is called M6a, a transmembrane

glycoprotein belonging to the PLP family (11). Although
the PLP family is the most abundant protein of central
nervous system myelin, M6a is a neuronal protein, and its
knock-down by siRNA results in decreased filopodial
number and decreased synaptophysin expression, whereas
overexpression of M6a has the opposite effect (11). Re-
peated stress in both rodents and tree shrews decreases
M6a expression, an effect that is prevented by treatment
with an antidepressant, tianeptine, that prevents stress-
induced remodeling of dendrites in the CA3 region of the
hippocampus (12). Chronic psychosocial stress in the tree
shrew also downregulated a number of other gene tran-
scripts associated with neurotrophic effects and cytoskel-
etal plasticity, including nerve growth factor (NGF) (13).

Neurotrophic factors also play a role in dendritic
branching and length. For example, BDNF �/� mice
show a less branched dendritic tree and do not show a
further reduction of CA3 dendrite length with chronic
stress, whereas wild-type mice show reduced den-
dritic branching after chronic stress (A.-M. Magarinos,
B. McEwen, unpublished observations). At the same time,
overexpression of BDNF prevents stress-induced reduc-
tions of dendritic branching in the CA3 hippocampus and
results in antidepressant-like effects in a Porsolt forced-
swim task (122). However, there is contradictory infor-
mation thus far concerning whether CRS reduces BDNF
mRNA levels in hippocampus, with some reporting a de-
crease (330) and other studies reporting no change (140,
169). This may reflect the balance of two opposing forces,
namely, that stress triggers increased BDNF synthesis to
replace depletion of BDNF caused by stress (202). BDNF
and corticosteroids appear to oppose each other, with
BDNF reversing reduced excitability in hippocampal neu-
rons induced by stress levels of corticosterone (129).

Corticotrophin releasing factor (CRF) is a key medi-
ator of many aspects related to stress (165). CRF in the
paraventricular nucleus regulates ACTH release from the
anterior pituitary gland, whereas CRF in the central amyg-
dala is involved in control of behavioral and autonomic
responses to stress, including the release to tPA that is an
essential part of stress-induced anxiety and structural
plasticity in the medial amygdala (204). CRF in the hip-
pocampus is expressed in a subset of GABA neurons
(Cajal-Retzius cells) in the developing hippocampus, and
early life stress produces a delayed effect that reduces
cognitive function and the number of CA3 neurons, as
well as decreased branching of hippocampal pyramidal
neurons (43, 44). Indeed, CRF inhibits dendritic branching
in hippocampal cultures in vitro (55) (105).

5. Functional consequences of structural remodeling

in hippocampus

CRS for 21 days causes impairments in memory in a
radial arm maze and in a Y maze that can be prevented by
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agents such as Dilantin and the antidepressant tianeptine,
which prevent stress-induced remodeling of CA3 den-
drites (65, 185, 391). In another study using a 1-mo
chronic variable stress paradigm, stressed rats took
longer to train in the initial Morris water maze trial the
day after the last stress session, and they also were im-
paired in learning a new platform location in a probe trial
(332). The effects of chronic stress on both morphology
and learning disappeared within 1–2 wk after cessation of
the daily stress regimen (68, 332), suggesting that it serves
an adaptive function and does not constitute “damage.”
This notion, discussed above in relation to the dendritic
remodeling during hibernation, is supported by the fact
that dominant rats in a social hierarchy have somewhat
larger reductions of CA3 dendritic length and branching
compared with subordinate rats in the hierarchy, with
both groups showing shorter dendrites than rats housed
in groups in ordinary cages; adrenal size was larger in the
subordinate rats (219).

Thus it is attractive to suppose that remodeling of
dendrites in hippocampus is not only an adaptation to a
behavioral situation but also possibly a protective strat-
egy to reduce excitatory input and prevent permanent
damage (212). Yet, there is evidence for enhancement of
ibotenic acid-induced excitotoxic damage in the CA3 re-
gion in rats given 21 days of chronic restraint compared
with unstressed rats (67). Interestingly, ibotenic acid dam-
age to CA1 is not enhanced by chronic stress, and female
rats do not show the stress-induced sensitization of dam-
age in either CA3 or CA1 (67), nor do female rats show
stress-induced remodeling of CA3 dendrites (112). Thus it
is tempting to conclude that the remodeling of dendrites
enhances excitotoxicity (64), but the only way to test that
is to prevent remodeling and determine whether this
makes damage less or worse. It is conceivable that dam-
age would be much worse if dendritic remodeling were
prevented, due to increased sensitivity to glucocorticoids
(see below) along with undiminished excitatory input.

In spite of the focus on dendritic remodeling after
repeated stress, it is apparent that chronic stress causes
other changes in the brain besides dendritic remodeling in
CA3, including effects on dentate gyrus neurogenesis
(267), dentate gyrus dendritic remodeling (332), and den-
tate gyrus LTP (258). Moreover, 21 days of chronic re-
straint alters the ability of acute stress to affect hippocam-
pal functions such as spatial memory, and here a change
in sensitivity to glucocorticoids is involved (64). Using
metyrapone to acutely reduce corticosterone levels in
rats given 21 days of CRS resulted in prevention of the
impairment of spatial memory seen in chronically
stressed animals (392). And, yet, corticosterone levels in
chronically stressed rats were only marginally higher dur-
ing spatial maze training than in control rats during the
maze training, indicating that there had been either a shift
in sensitivity of the hippocampus to corticosterone or a

qualitative change towards inhibition of the spatial task
(392). Whatever the mechanism, these results also high-
light the fact that stress-induced dendritic retraction,
which was unlikely to have reversed itself in a matter of
several hours during Y-maze training and metyrapone
treatment, is not a sufficient condition for impairment of
hippocampal dependent spatial memory (64). Rather, in-
creased sensitivity to glucocorticoids is also a factor.

C. Variable Glucocorticoid Involvement

in Structural Plasticity

There are a number of examples of altered responses
to glucocorticoids in relation to structural plasticity. For
neurogenesis in dentate gyrus, elevated glucocorticoid
levels in an enriched environment or during physical ac-
tivity are associated with increased neurogenesis and/or
cell survival, even though there are other conditions in
which glucocorticoids suppress neurogenesis (231). Chro-
nicity of glucocorticoid elevation may play a role, with
acute glucocorticoid elevation suppressing cell prolifera-
tion and prolonged glucocorticoid exposure ceasing to
have this effect (231). Chronic restraint stress is known to
reduce dentate gyrus proliferation, whereas acute re-
straint does not have any measurable effect (266). In
contrast, the ability of physical activity to elevate neuro-
genesis depends on the social housing environment, that
is, individual housing of rats that results in elevated cor-
ticosterone levels prevented running from acutely in-
creasing neurogenesis. Yet, reducing corticosterone lev-
els by adrenalectomy and supplementation with cortico-
sterone in the drinking water reinstated the positive effect
of exercise on neurogenesis (345).

This implies a shift in glucocorticoid sensitivity, and
a possible factor may be excitatory neurotransmission.
NMDA receptors play a role in regulation of neurogenesis,
having both positive and negative effects in different ex-
perimental settings (242), and blocking NMDA receptors
prevents acute glucocorticoid effects on neurogenesis
(47), indicating that the role of excitatory amino acids is
a primary one. In this connection, it is important to recall
the different effects of stress on memory that depend on
the state of arousal and the timing with the learning
situation (144) (see Fig. 7). Moreover, the possible in-
volvement of nongenomic effects of adrenal steroids must
be considered (see above).

1. Effects of chronic glucocorticoid administration

on morphology and memory

Chronic corticosterone treatment by injection or by
passive administration in the drinking water are both able
to cause dendrites to retract in CA3 hippocampus (192,
332, 389). Moreover, the effects of injected corticosterone
are known to be blocked by Dilantin, an inhibitor of ion
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channels that has antiepileptic effects, a result that is
consistent with the evidence that glutamate is involved in
remodeling (370). Yet, there is an important difference
between the effects of repeated stress and chronic glu-
cocorticoid exposure, in that chronic corticosterone
treatment was reported to reduce the volume fraction
occupied by mitochondria in the CA3 region (61) while, as
noted earlier, 21 days of CRS increases mitochondrial
profiles in mossy fiber terminals (196). This suggests that
somewhat different mechanisms may be involved in ef-
fects of CRS and corticosterone in hippocampus, a pos-
sibility that is supported by the finding that, while both
corticosterone treatment in the drinking water and 21
days of CRS both caused CA3 remodeling when given
alone, the combination of CRS plus corticosterone treat-
ment abolished the morphological change (195). These
mechanistic differences remain to be determined.

In spite of the possible differences in mechanism,
chronic corticosterone treatment and chronic restraint or
immobilization stress both cause impairment of hip-
pocampal-dependent memory tasks, although there are
differences in magnitude of effect that appear to be de-
pendent on dose of corticosterone, duration of treatment,
age of rat being treated, and whether or not the cognitive
task is a demanding one (15, 23, 24, 34, 60, 77, 99, 221).
These studies indicate that only more prolonged treat-
ment by higher glucocorticoid doses are able to impair
performance on more demanding tasks involving hip-
pocampal function and that they do so under conditions
in which there is no neuronal loss but there are reductions
in volume of hippocampal neuropil that may be due to
loss of glia cells or reduction of dendritic length and
branching. Given these results with rodents, it is not so
surprising that a relatively modest regimen of cortisol
treatment for 12 mo did not cause outright neuronal loss
in the pigtail macaque hippocampus (177).

D. Prefrontal Cortex and Amygdala

Acute and repeated stress (21 days of CRS) also
cause functional and structural changes in other brain
regions such as the prefrontal cortex and amygdala. CRS
and chronic immobilization caused dendritic shortening
in medial prefrontal cortex (41, 70, 168, 282, 284, 332, 363,
373) but produced dendritic growth in neurons in amyg-
dala (363), as well as in orbitofrontal cortex (181). These
actions of stress are reminiscent of recent work on ex-
perimenter versus self-administered morphine and am-
phetamine, in which different, and sometimes opposite,
effects were seen on dendritic spine density in orbitofron-
tal cortex, medial prefrontal cortex, and hippocampus
CA1 (295). For example, amphetamine self-administration
increased spine density on pyramidal neurons in the me-
dial prefrontal cortex and decreases spine density on
orbitofrontal cortex pyramidal neurons (75).

Along with many other brain regions, the amygdala
and prefrontal cortex also contain adrenal steroid recep-
tors (6, 8); however, the role of adrenal steroids, excita-
tory amino acids, and other mediators has not yet been
studied in detail in these brain regions, in contrast to the
hippocampus. Nevertheless, glucocorticoids do appear to
play a role, since 3 wk of chronic corticosterone treat-
ment was shown to produce retraction of dendrites in
medial prefrontal cortex (373), although with subtle dif-
ferences in the qualitative nature of the effect from what
has been described after chronic restraint stress (283).
Another study determined the effect of adrenalectomy or
either chronic treatment for 4 wk with corticosterone or
dexamethasone on volume and neuron number in the
prefrontal cortex (53). Dexamethasone treatment at a
dose that may have been high enough to enter the brain
(although this was not directly measured) caused a loss of
neurons in layer II of the infralimbic, prelimbic, and cin-
gulate cortex, whereas corticosterone treatment reduced
the volume but not the neuron number of these cortical
regions (53). The dexamethasone treatment was particu-
larly effective in impairing working memory and cognitive
flexibility using working memory task in a Morris water
maze (53). Effects of chronic stress were not investigated
in this study. These data notwithstanding, the cautions
expressed above concerning differences between chronic
stress and chronic glucocorticoid treatment must be kept
in mind for the prefrontal cortex, as well as the amygdala,
that has not been studied yet in this regard.

Behavioral correlates of CRS-induced remodeling in
the prefrontal cortex include impairment in attention set
shifting, possibly reflecting structural remodeling in the
medial prefrontal cortex (181). Attention set shifting is a
task in which a rat first learns that either odor or the
digging medium in a pair of bowls predicts where food
reward is to be found, then new cues are introduced and
the rat needs to learn which ones predict the location of
food (33). There is also a report that chronic restraint
stress impairs extinction of a fear conditioning task (230).
This is an important lead since the prefrontal cortex is
involved in extinction, a type of learning (309), but much
more research is needed to explore the complex relation-
ship between stress, fear conditioning, extinction, and
possible morphological remodeling that may well accom-
pany each of these experiences.

Regarding the amygdala, chronic stress for 21 days or
longer not only impairs hippocampal-dependent cognitive
function (212) but it also enhances amygdala-dependent
unlearned fear and fear conditioning (68), which are con-
sistent with the opposite effects of stress on hippocampal
and amygdala structure. Chronic stress also increases
aggression between animals living in the same cage, and
this is likely to reflect another aspect of hyperactivity of
the amygdala (385). Moreover, chronic corticosterone
treatment in the drinking water produces an anxiogenic
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effect in mice (16), an effect that could be due to the
glucocorticoid enhancement of CRF activity in the amyg-
dala (72, 198).

As for mechanism of remodeling, besides the possi-
ble role of glucocorticoids and excitatory amino acids,
tPA is required for acute stress to activate not only indices
of structural plasticity but also to enhance anxiety (227).
These effects occur in the medial and central amygdala
and not in basolateral amygdala, and the release of CRF
acting via CRF-1 receptors appears to be responsible
(204). Nothing is yet known about the role of tPA, if any,
in the prefrontal cortex, although tPA does appear to play
a role in stress-induced reductions of spine synapse num-
ber in the CA1 region of the mouse hippocampus (260), as
noted earlier.

BDNF may also play a role in amygdala, since over-
expression of BDNF, without any applied stressor, en-
hances anxiety in an elevated plus maze and increases
spine density on basolateral amygdala neurons, and this
occludes the effect of immobilization stress on both anx-
iety and spine density (122). As noted above for hip-
pocampus, BDNF overexpressing mice also show re-
duced behavioral depression in the Porsolt forced-swim
task and show protection against stress-induced shorten-
ing of dendrites in the CA3 region (122).

E. Interactions Between Amygdala, Prefrontal

Cortex, and Hippocampus

The prefrontal cortex, amygdala, and hippocampus
are interconnected and influence each other via direct
and indirect neural activity (9, 118, 208, 209, 264). For
example, inactivation of the amygdala blocks stress-in-
duced impairment of hippocampal LTP and spatial mem-
ory (160), and stimulation of basolateral amygdala en-
hances dentate gyrus field potentials (139) while stimula-
tion of medial prefrontal cortex decreases responsiveness
of central amygdala output neurons (281). The processing
of emotional memories with contextual information re-
quires amygdala-hippocampal interactions (268, 293),
whereas the prefrontal cortex, with its powerful influence
on amygdala activity (281), plays an important role in fear
extinction (229, 236). Because of these interactions, fu-
ture studies need to address their possible role in the
morphological and functional changes produced by single
and repeated stress.

F. Sex Differences in Stress Effects

There are sex differences in the effects of stress on
the hippocampus and amygdala, whereas nothing is yet
known about the prefrontal cortex in this regard. Chronic
foot shock stress for 3 wk caused a decrease in prolifer-
ation in dentate gyrus in singly housed male rats but

caused an increase in proliferation in female rats, and
both effects were prevented by group housing (375). CRS-
induced retraction of dendrites in the CA3 region of hip-
pocampus is found in males but not in females unless the
females are ovariectomized (112; G. Wood and B. McEwen,
unpublished observations). Chronic restraint stress for 21
days has been reported to either enhance or have no
effect on performance of female rats in a spatial learning
task, while having an inhibitory effect in males (37, 38, 66,
185, 220). Interestingly, as noted above, females did not
show the chronic stress-induced enhancement of ibotenic
acid-induced damage in the CA3 region, in contrast to
chronically stressed male rats (67). In basolateral amyg-
dala, chronic restraint stress increased dendritic length in
males and in estradiol-treated females, but not in ovari-
ectomized females (Wood and McEwen, unpublished ob-
servations). Furthermore, as another example of a sex
difference, acute tail shock restraint stress produces op-
posite effects on classical eye blink conditioning, enhanc-
ing performance in males and reducing it in females (383),
and both developmental and adult activation effects of
gonadal hormones are involved (324). Further discussion
of sex differences is beyond the scope of this article,
and the reader is referred to reviews on why sex dif-
ferences are important for the study of brain function
(45, 161, 215).

V. TRANSLATION TO HUMAN BRAIN,

BEHAVIOR, AND SOCIAL ORGANIZATION

Translation of the already vast amount of informa-
tion on stress effects on the brain and body from animal
models to the human organism, and vice versa, is an
enormous challenge, yet there has already been consider-
able progress, some of which has already been noted
throughout this review. This section addresses three top-
ics with a distinct human flavor: 1) evidence for stress and
glucocorticoid effects on human brain structure and ac-
tivity in mood and anxiety disorders, chronic pain states,
and in relation to gastrointestinal activity and food intake
control; 2) new insights into brain-body interactions as-
sociated with “positive health” and low self-esteem; and
3) current understanding as to how socioeconomic status
affects brain and body health. Indeed, the translation is
not one-way, and a significant part of the information on
brain-body interactions and health implications has come
from studies on human populations and individuals. The
discussion in this section of the review will pave the way
for the next section, namely, a discussion of brain-cen-
tered interventions for our own species that will reduce
stress and the negative consequences of allostatic over-
load.
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A. Brain Structure and Function

Much of the impetus for studying the effects of stress
on the structure of the human brain has come from the
animal studies summarized thus far. Although there is
very little evidence regarding the effects of ordinary life
stressors on brain structure, there are indications from
functional imaging of individuals undergoing ordinary
stressors, such as counting backwards, that there are
lasting changes in neural activity that coincide with the
elevation of cortisol levels (368). Moreover, the study of
depressive illness and anxiety disorders has also provided
some insights. Life events are known to precipitate de-
pressive illness in individuals with certain genetic predis-
positions (50, 156, 158). Moreover, brain regions such as
the hippocampus, amygdala, and prefrontal cortex show
altered patterns of activity in PET and fMRI and also
demonstrate changes in volume of these structures with
recurrent depression, namely, decreased volume of hip-
pocampus and prefrontal cortex and amygdala (92, 321,
323). Yet, amygdala volume has been reported to increase
in the first episode of depression, whereas hippocampal
volume is not decreased (111, 191).

Studies of autopsy tissue from individuals suffering
from long-term major depression have provided some
insights into what may be going on. They have revealed
loss of glial cells and not neurons in hippocampus (344),
which is consistent with, but not proof of, a retraction of
dendrites in this brain region. The amygdala and prefron-
tal cortex of chronically depressed individuals also show
evidence of glial cell loss (286, 322).

Although there is dysregulation of cortisol secretion
in many people with depressive illness (394), it is not
clear so far whether the elevation or dysregulation of
cortisol plays a direct role in changes in brain structure
and function. However, Cushing’s disease provides some
clues of what cortisol can do. In Cushing’s disease, there
are depressive symptoms that can be relieved by surgical
correction of the hypercortisolemia (240, 338). Both ma-
jor depression and Cushing’s disease are associated with
chronic elevation of cortisol that results in gradual loss of
minerals from bone and abdominal obesity. In major de-
pressive illness, as well as in Cushing’s disease, the dura-
tion of the illness and not the age of the subjects predicts
a progressive reduction in volume of the hippocampus,
determined by structural MRI (323, 337).

Moreover, there are a variety of other anxiety-related
disorders, such as posttraumatic stress disorder (PTSD)
(39) (270) and borderline personality disorder (94), in
which atrophy of the hippocampus has been reported,
suggesting that this is a common process reflecting
chronic imbalance in the activity of adaptive systems,
such as the HPA axis, but also including endogenous
neurotransmitters, such as glutamate.

More generally, it has been known for some time that
stress hormones, such as cortisol, are involved in psycho-
pathology, reflecting emotional arousal and psychic dis-
organization rather than the specific disorder per se (303).
Thus the dysregulation of cortisol and other mediators
that form the network of allostasis, as summarized earlier
in this review, is likely to play a role in many psychiatric
disorders as well as systemic disorders such as diabetes
in which there are often psychiatric manifestations (288).
Indeed, another important factor in hippocampal volume
and function is glucose regulation, as noted above in
section II. Poor glucose regulation is associated with
smaller hippocampal volume and poorer memory func-
tion in individuals in their 60s and 70s who have “mild
cognitive impairment” (MCI)(69), and both MCI and type
2, as well as type 1, diabetes are recognized as risk factors
for dementia (80, 127, 255).

Not all the effects of elevated HPA activity are bad in
terms of brain function, and in the case of PTSD, there is
evidence that inadequate cortisol responses to traumatic
events make an individual more vulnerable to developing
PTSD (316–318). A recent animal stress study using the
Lewis rat, which produces low levels of glucocorticoid in
response to stress, provides supporting information, in
that corticosterone administration before exposure to
predator stress in the form of well-soiled cat litter re-
duced the poststress anxiety (63).

B. Stress, Fatigue, and Idiopathic Pain Disorders

There are a number of syndromes that have overlap-
ping occurrence with PTSD and with each other. Chronic
fatigue syndrome (CFS) and idiopathic chronic pain con-
ditions, such as fibromyalgia and irritable bowel syn-
drome (IBS), appear to reflect an imbalance in mediators
of allostasis, as depicted in Figure 5D (84, 110, 206). These
conditions are also associated with symptoms of PTSD
(110). Multiple mediators of allostasis and end points of
allostatic load are reported to be altered, for example, in
CFS, accompanied by low aldosterone, low urinary corti-
sol, and elevated waist-hip ratio, as well as increased
bodily pain and poor physical functioning (119, 199).
Lower than normal cortisol and aldosterone are associ-
ated with higher than normal levels of proinflammatory
cytokines in CFS (110, 233). However, a specific and
uniform dysfunction of the HPA axis is unlikely to be a
key feature of CFS; rather, imbalances in other hormones
such as dehydroepiandrosterone (DHEA) and abnormal
serotonergic function are also implicated, along with the
above-mentioned elevations in cytokines, pointing to a
broader disruption of the network of allostasis (59). Yet,
certain alleles of the glucocorticoid receptor have been
associated with CFS (285).

There is also an overlap of these symptoms with
those of “burnout,” a condition associated with emotional
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exhaustion, depersonalization, lack of satisfaction with
personal accomplishment, and low self-esteem (114, 137,
277). Although lower than normal cortisol has been re-
ported in burnout along with higher than normal sensitiv-
ity to dexamethasone suppression of the HPA axis, this is
not always reported, and the underlying physiology is
undoubtedly more complex, as it appears also to be for
CFS and idiopathic chronic pain disorders (234, 235, 331).
Increased risk for type 2 diabetes has been reported in
chronic burnout in otherwise healthy individuals (226).

Psychological distress and strong emotions play an
important role in promoting the symptoms of idiopathic
pain disorders such as IBS, fibromyalgia, and tempero-
mandibular joint disorder (87, 135, 292). In IBS, as also in
other chronic pain conditions, there are alterations in
activation of brain regions associated with central
arousal, pain, and strong emotions, including brain stem,
the insula, amygdala, hippocampus, and cingulate cortex
among other brain regions (19, 172, 207, 243, 388). Reduc-
tion in dopaminergic activity in the nucleus accumbens
may play a key role along with elevated NMDA receptor-
mediated activity in brain regions, including the hip-
pocampus (386, 387). Elevated CRF is associated with
sensory and emotionally driven pain symptoms, although
not with CFS (222). One of the unanswered questions is
whether there is structural remodeling of brain areas
involved in these processes, which, along with chemical
imbalances in 5-HT-, CRF-, dopamine-, and NMDA-medi-
ated neural activity, would help explain the apparent
sensitization of the brain to pain stimuli. When consider-
ing pain and brain activation associated with pain, it is
important to recognize the role of brain mechanisms in
the placebo effect, in which perceptions of pain can be
manipulated by expectations (28, 365). This further em-
phasizes the importance of cognitive processes in top-
down regulation of the body.

C. Stress and Cognitive Control of Food Intake

Along with sleep deprivation (sect. III), stress often
triggers eating of comfort foods (78). Besides the hypo-
thalamus (98), the hippocampus has also been linked to
disturbances of food intake and body weight regulation,
primarily for its ability to limit unrestricted food intake.
Lesions of the hippocampus lead to increased body mass
due to increased food intake (79). Obese and recovered
obese subjects differ from lean individuals in showing
lesser activation of posterior hippocampus after consum-
ing a satiating meal; the persistence of activity in never-
obese lean individuals is consistent with other findings
that the hippocampus actively contributes to control of
food intake (79, 83). This conclusion is further supported
by a study of electrical stimulation-induced vagus nerve
activity leading to gastric distension as a satiety inducer,

in which the right hippocampus showed increased activa-
tion that was associated with scores on an “emotional
eating” measure (367). Besides hippocampus, gastric dis-
tension increased activity in right anterior cerebellum,
orbitofrontal cortex, and striatum, regions previously
shown to be involved in drug craving, suggesting a
broader role of these brain structures in regulating the
craving for rewarding stimuli (367).

D. New Insights Into Positive Health and

Self-Esteem as Brain-Body Interactions

“Positive health” and self-esteem are two uniquely
human-oriented concepts that, nevertheless, have been
recently subject to illumination based on the concepts
and findings discussed in this review. Having a positive
outlook on life and good self-esteem appear to have long-
lasting positive health consequences (275), and good so-
cial support has a positive influence to reduce the mea-
sures of allostatic overload (319). Positive affect, assessed
by aggregating momentary experiences throughout a
working or leisure day, was found to be associated with
lower cortisol production and higher heart rate variability
(showing higher parasympathetic activity, a sign of car-
diac health), as well as a lower fibrinogen response to a
mental stress test (341).

On the other hand, poor self-esteem has been shown
to cause recurrent increases in cortisol levels during a
repetition of a public speaking challenge in which those
individuals with good self-esteem are able to habituate,
i.e., attenuate their cortisol response after the first speech
(162). Furthermore, poor self-esteem and low internal
locus of control have been related to 12–13% smaller
volume of the hippocampus, as well as higher cortisol
levels during a mental arithmetic stressor (276, 278). As
noted above in section II, the elevated cortisol may be
both a cause and a result of the smaller hippocampus,
which is consistent with the glucocorticoid cascade hy-
pothesis of Sapolsky (311).

Related to both positive affect and self-esteem is the
role of friends and social interactions in maintaining a
healthy outlook on life. Loneliness, often found in people
with low self-esteem, has been associated with larger
cortisol responses to wakening in the morning and higher
fibrinogen and natural killer cell responses to a mental
stress test, as well as sleep problems (340). On the other
hand, having three or more regular social contacts, as
opposed to zero to two such contacts, is associated with
lower allostatic load scores (319).

E. Socioeconomic Status and Health

Differences in income and education, collectively re-
ferred to as “socioeconomic status” (SES) have significant
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effects on mortality and morbidity for a number of dis-
eases, with low SES faring worse than middle SES and
much worse than high SES individuals in industrialized
western societies (4, 5). The SES differences are also
evident, in a linear fashion from low to high SES, for
predisease conditions such as obesity and metabolic syn-
drome (42) and fibrinogen (201, 378), as well as substance
abuse and anxiety and mood disorders (210). Subjective
SES, that is, where people rate themselves on a scale of
income and education, is also an effective predictor of
health status (329, 390). Possible mediators of the subjec-
tive SES-health link include negative affect over such
issues as economic insecurity associated with low SES
and sense of control related to socioeconomic position
(329), as well as low self-esteem.

VI. MANAGEMENT OF CHRONIC STRESS AND

ALLOSTATIC LOAD AND OVERLOAD

A. Brain-Centered Interventions

Because the brain is the central organ of the stress
response, it is a primary target for interventions intended
to reduce the burden of chronic stress, as defined by the
concept of allostatic load and overload. In general, brain-
centered interventions are very familiar in everyday life.
They involve changing behavior and life-style, for exam-
ple, by improving sleep quality and quantity, improving
social support, and cultivating a positive outlook on life,
along with maintaining a healthy diet, avoiding smoking,
and engaging in regular, moderate physical activity.

These types of changes are usually more easily said
than done. Yet, policies of government and the private
sector can play a major role in promoting this, as they
have done for smoking cessation and wearing of seat belts
in automobiles, by creating incentives at home and in
work situations and also by building community services
and opportunities that encourage the development of ben-
eficial individual life-styles.

The intention of this section of the review is not to
exhaustively review this area; that is the subject of text-
books of health psychology and the target of policy dis-
cussions at all levels of government and in the private
sector. Rather, this portion of the review will discuss phys-
iologically relevant aspects of an area that is now called
“social neuroscience” (http://www.social-neuroscience.com/)
that is beginning to address the effects of the social
environment on the brain and the physiology that it reg-
ulates. We shall make note of some of the recent work on
effects and mechanisms of two types of interventions for
stress and allostatic load, namely, exercise and social
support, and the combination of the two, after first ac-
knowledging the important role of pharmaceutical agents
along with their limitations.

B. Pharmaceutical Agents

It is important to note that there are many useful
pharmaceutical agents, such as sleep medications, anxio-
lytics, beta blockers, and antidepressants, that counteract
some of the problems associated with being stressed out.
Likewise, drugs that reduce oxidative stress or inflamma-
tion, block cholesterol synthesis or absorption, and treat
insulin resistance or chronic pain can help deal with the
metabolic and neurological consequences of being
“stressed out.” All of these medications are valuable to
some degree, yet each one has its side effects and limita-
tions, as illustrated by recent problems with the cycloox-
ygenase-2 inhibitors for chronic inflammatory pain (308).

Because of the nonlinearity of the systems of allosta-
sis, the consequences of any drug treatment may be either
to inhibit the beneficial effects of the systems in question
or to perturb other systems that interact with it in a
direction that promotes an unwanted side effect. An ex-
ample is the use of anti-inflammatory agents to treat fever
associated with an infection (245). Because the fever is a
sign of the body’s attempt to fight the infection, it is
unwise to suppress the fever completely. On the other
hand, septic shock represents the excessive, unregulated
response of the defense system to an infection that can be
lethal (35, 245). Thus some means of containing such
responses are needed, and both glucocorticoids and acti-
vation of parasympathetic responses are helpful (35, 239).
In addition to pharmaceuticals, there are two behavioral
interventions, namely, physical activity and social sup-
port, where there has been some progress in understand-
ing how they may benefit brain and body functions asso-
ciated with allostasis and allostatic load.

C. Physical Activity

A sedentary life-style is a major risk factor for many
of the diseases of modern life including obesity, diabetes,
cardiovascular disease, depression, and dementia, and
recent studies have shown that moderate physical activity
can be beneficial for the brain and cardiovascular and
metabolic systems (22, 29, 167, 263, 302). Voluntary phys-
ical activity has been shown to increase neurotrophin
expression in cortex and hippocampal regions of the
brain (73), as well as to increase neurogenesis in the
dentate gyrus of young as well as aging animals (357). One
mechanism for these effects involves the actions of cir-
culating IGF-I, which is taken up by the brain and acts via
receptors found in the hippocampus, as summarized early
in this article. Moreover, increased neurogenesis in den-
tate gyrus has been linked to the actions of antidepressant
drugs, providing a potential parallel with the antidepres-
sant actions of physical activity (95, 251). Increased neu-
rogenesis improves memory (382), and new neurons are
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believed to participate in learning of hippocampal-depen-
dent tasks (176). Although the role of neurogenesis in
dentate gyrus is still controversial, new neurons appear to
be more excitable and may contribute to greater cognitive
flexibility (150, 382). Related to effects of exercise on
neurogenesis is the effect of dietary restriction, which
also increases neurogenesis and elevates the level of
BDNF in hippocampus (173). BDNF is an important factor
in current thinking about the actions of antidepressant
treatments (369), including the consequences for hip-
pocampal volume, memory, and mood disorders of having
the Val66Met allele of the BDNF gene (130, 142, 265, 349).

D. Social Support

Another behavioral intervention that has begun to be
investigated in terms of brain and body health is “social
support.” Social support “is composed of emotional and
instrumental support. It is an advocative interpersonal
process characterized by reciprocal exchange of informa-
tion; it is context specific and it results in improved
mental health” (106). Social support in the form of having
regular social contacts with supportive friends or family
or health professionals, who provide emotional support
and provided useful information, has been shown to re-
duce the allostatic load score, which measures key phys-
iological markers related to chronic stress and a poten-
tially health-damaging life-style (319). Social support also
ameliorates the type of chronic stress in caregivers that
has been associated with reduced length of telomeres in
white blood cells (100). So far nothing is known about
how social support may benefit brain circuits that are
affected by chronic stress and allostatic load, although it
is clear that social support has beneficial effects on mood
and overall mental health (3, 175, 315, 327).

Beyond the question of how emotional and instru-
mental support benefit the individual, a somewhat
broader review of social support is how the policies of
government and employers act to encourage creation of a
compatible social environment for adopting health-pro-
moting behaviors. The Acheson Report (2) from the
United Kingdom in 1998 recognized that no public policy
of virtually any kind should be enacted without consider-
ing the implications for health of all citizens. Thus basic
education, housing, taxation, setting of a minimum wage,
and addressing occupational health and safety and envi-
ronmental pollution regulations are all likely to affect
health via a myriad of mechanisms. At the same time,
providing higher quality food and making it affordable
and accessible in poor, as well as affluent neighborhoods,
is necessary for people to eat better, providing they also
learn what types of food to eat (93). Likewise, making
neighborhoods safer and more congenial and supportive
(154, 304) can improve opportunities for positive social

interactions and increased recreational physical activity.
However, governmental policies are not the only way to
reduce allostatic load. For example, businesses that en-
courage healthy life-style practices among their employ-
ees are likely to gain reduced health insurance costs and
possibly a more loyal workforce (10, 262, 376).

Finally, there are programs in existence that combine
some of the key elements just described, namely, physical
activity and social support, along with one other ingredi-
ent that is hard to quantify, namely, finding meaning and
purpose in life. One such program is the Experience
Corps that takes elderly volunteers and trains them as
teachers’ assistants for younger children in the neighbor-
hood schools (109). Not only does this program improve
the education of the children, it also benefits the elderly
volunteers and improves their physical and mental health
and slows age-related decline of function (314). It will be
important to see how this program may more directly
benefit the function of the brain circuits that are respon-
sive to chronic stress and allostatic load. This program
has now been adopted as a key part of a successful
political campaign for the governorship of the state of
Maryland (Abbruzzese, R. O’Malley and Brown Release
Detailed Plan to Support Maryland’s Aging Population.
Press Release, Jan. 24, 2006), illustrating that politicians
and policy makers do sometimes make use of what phys-
iology and neuroscience are learning.

VII. CONCLUSIONS

The intent of this review has been not only to sum-
marize salient facts pertaining to the central role of the
brain in the effects of stress on brain-body interactions
over the life course, and the protective and damaging
paradox of these interactions, but also to provide a con-
ceptual framework for future studies that will infuse phys-
iology and neuroscience into the better mechanistic un-
derstanding of complex stress-related social problems
and their solution by every means available: biological,
behavioral, sociological, and political.

As the interpreter of and responder to what is stress-
ful, the adult brain is a malleable organ and adapts struc-
turally and functionally to experiences including those
which are stressful and potentially deleterious. These
changes do not necessarily constitute “damage” but may,
nevertheless, be long lasting, and it is their spontaneous
reversal or reversal by behavioral and pharmaceutical
means that may be the key to treatment of anxiety, mood,
and other stress-related behavioral disorders.

Events early in life affect how the brain responds to
stressors throughout adult life and influences the aging
process as well as susceptibility to the diseases of modern
life, such as cardiovascular disease, diabetes, and depres-
sion. This connection occurs in part because the nervous
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system regulates and responds to systemic processes via
the neuroendocrine, autonomic, and immune systems.
Social factors, along with physical activity, have a pow-
erful impact on brain development, structure, and func-
tion throughout the life course and thereby affect the
health of the body as well. Therefore, manipulations of
the social environment via policies of government and the
private sector, along with promoting increased physical
activity, health life-style, and social support at an individ-
ual level, can help encourage individual behavior change,
that, in turn, is an effective way of counteracting the
deleterious effects of chronic stress as an adjunct and, in
some cases, alternative to pharmaceutical therapy.
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